
Massive simulation using GPU of a distributed behavioral model of a flock
with obstacle avoidance

Ugo Erra, Rosario De Chiara, Vittorio Scarano, Maurizio Tatafiore

ISISLab
Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,

Universit̀a degli Studi di Salerno, 84081 Baronissi, Italy
Email: {ugoerr, dechiara, vitsca}@dia.unisa.it

m tatafiore@yahoo.it

Abstract

In this work, we present a massive simulation of a
behavioral model using graphics hardware. In par-
ticular we took a well established model to simu-
late complex flocks and we focused our attention
on its implementation using techniques to manage
efficiently large amount of data. Using the recent
programmability of GPUs and recent extensions of
computer graphics programming, we implemented
on the graphics hardware the model capable of man-
aging a large aggregate motion of birds in a vir-
tual environment as well as to avoiding both static
and dynamic obstacles. We demonstrated the ef-
fectiveness of our GPU implementation when com-
pared with CPU according to recent trends that
show graphics hardware capable of also working
outside of its natural application field.

1 Introduction

Graphics hardware is a fascinating new field of re-
search that gloves a new shine on the traditional
number crunching computation. Due to large data
computation in computer graphics, manufacturers
have designed a stream architecture capable of high
computational power. As a side effect there is a
growing interest in using graphic boards also as
general purpose stream processing engine [17]. The
importance of this evolution has been emphasized
by the name GPU (Graphics Processing Unit) given
to this processor.

Part of research efforts have been focused on the
simulation of complex models on GPUs. In fact, an
accurate simulation shows two important aspects:
1) is computationally expensive and 2) manages a

large aggregate of data. A GPU has the capabil-
ity of running programs, called fragment programs,
in highly efficient way as well as the capability
to perform extremely fast read/write operations as
stream data in memory locations arranged as tex-
tures. To take maximum advantage from GPU, the
effort is devoted to a method to map the application
as a stream process, hence the data must appear as
stream data.

Of course, all the computational power available
for free in consumer graphics boards comes with
some “strings” attached, i.e. the complexity in us-
ing it for general purpose computations instead of
3d graphics rendering for which it has been de-
signed for. Reviews show that the effort to use of
GPUs for complex simulation pays back with high
speedups of the GPU compared to the CPU.

We focus our attention on a distributed behav-
ioral model of a flock. We aim to port this simu-
lation on GPU by mapping this model as a stream
computation. In nature every element of a flock uses
a simple local behaviors to take a decision about
what direction is to be followed. This decision is
based on its natural behavior but also from simple
information that are perceived from neighbors. The
information about elements of flock are managed
as stream data and all behaviors are implemented
as fragment programs on a GPU. The CPU is only
used to provide spatial sorting to GPU when needed
and to manage scene rendering of flock.

In this work we show how to map a distributed
behavioral model of a flock into GPU as a stream
process and managing the data as stream data. Be-
sides we describe how to use and improve the vector
fields for obstacle avoidance using graphics hard-
ware for linear interpolation. Finally, we discuss
our implementation of a spatial data structure for

VMV 2004 Stanford, USA, November 16–18, 2004

neighbor searching and we describe our heuristic to
skip same updates of this structure.

This work is organized as follow: in Section 2
we present some related work about simulations
on graphics hardware. Section 3 present a dis-
tributed behavioral model with the introduction the
data structure for boid’s local vision and the de-
scription of the mechanism for obstacle avoidance
using graphics hardware. Section 4 describes our
architecture of the behavioral model and how it was
mapped on graphics hardware with some imple-
mentation details. Some final comments with the
description of future work conclude the paper in
Section 6.

2 Related works

In recent years non-graphics applications like sim-
ulations on GPUs are becoming more popular. Har-
ris et al. [5] present a method for real-time visual
simulation using an extension of cellular automata,
known as coupled map lattice, that is useful to sim-
ulate various phenomenas as boiling.

Several works have been presented for fluid sim-
ulations solving Navier-Stokes equations on GPUs.
Wei et al. [8] show a physically-based flow simu-
lation which support complex boundary conditions
running on GPUs. Boltz et al. [1] have also devel-
oped a conjugate-gradient solver for Navier-Stokes
equations. Also Kruger [6] has presented the GPU
implementation of several algebra operator used to
solve that equations. All these works are all moti-
vate to make simulation GPU driven.

Other works show how it is possible to use graph-
ics hardware for non-graphics applications. In [7]
Lengyel describes a method for robot motion plan-
ning using rasterization hardware. Recently several
methods have been used for ray tracing computation
as in [2] and [9].

The work of Reynolds is our starting point about
the study of a distributed behavior model. This
model simulates the complex aggregate motion of
a flock of birds, a herd of land animals, or a bank
of fishes. In [12], Reynolds focused his study about
a model that is apparently plausible without consid-
erations about how to manage efficiently large ag-
gregate motion of elements. This work is similar to
particle systems presented by [11] to simulate nat-
ural effects like fire, clouds, smoke, etc., the main
difference is that every particle is completely inde-

pendent and there is not interaction between them.
Later on, Reynolds presented some results on the
implementation of the model on a PlayStation 2
[14].

3 A behavior model

In this paper we will aim to simulate a flock of birds
starting from Reynold’s work [12], but our consid-
erations can be applied to others scenarios too.

Every element in this group is calledboid (the
contraction ofbirdoid). Every boid has some limi-
tations: it has a strictly local knowledge of the space
it occupies and its knowledge comes from a simu-
lated vision from its current position, in other words
there is no centralized control. The flock takes its
decisions in a totally distributed manner in order to
obtaining a synchronized movement.

This distributed decisions mechanism is bor-
rowed from nature. Indeed, Reynolds observes that,
in nature, none of the creatures being part of a group
has a full knowledge of the entire group. Hence the
decisions must be taken by every single element,
local perceptions of the world as well as from in-
formation that is perceived from its neighbors. The
sum of all this elementary behaviors is usually deep
enough to enable the flock to present the complex
aggregate motion that we can see in nature. The
keystone of the simulation of this model is the im-
itation of this distributed partial knowledge of the
group. This distributed mechanism jointly with a
reasonable simulation of the physics of flight pro-
duces a very natural behavior.

3.1 Boid definition

Every boid in the system is defined as follow: a set
of associated parameters used for the simulation of
the flight as mass, maximum speed, maximum ac-
celeration, global position, the current speed and a
view reference system used to represent the point of
view of the boid. In this reference system we used
the vectorsforward, sideandup to indicate the ori-
entation of boid. Part of this information is constant
and defined at the “birth” of the boid while another
part is updated at every frame of the simulation; this
means that the simulation isdiscrete.

666

Figure 1: The three different types of steering behaviors. The first shows theseparation, the boid tends get
farer from the others nearby. The second shows thealignment, the boid tends to align itself to other boids
nearby. The third shows thecohesion, the boid tends to stick together with the others nearby.

3.2 Local view

To support the local perception but also to manage a
large set of boids we use a data structure (1) that al-
lows to quickly obtain information about neighbors
of every boid and (2) must be updated efficiently at
every frame as the flock moves. The idea (similar to
the one presented in [14]) is to use a simple space
partitioning data structure in which boids are sorted
in a regular cell grid, every cell keeps a list of boids
that are flying in it. Given a boid, in constant time it
is calculated in which cell it is flying and by explor-
ing the adjacent cells, it is possible to gather infor-
mation about boids around it. This stage is the only
part of the simulation whose execution is still run on
CPU because the sorting involves random access to
memory for both reading and writing and these op-
erations are currently not simultaneously available
on graphics hardware.

The synchronized aggregated motion of the flock
is achieved by fixing one or more spatial goals
which the boids have to reach, these goals are the
result of the sum of every boid’s steering behaviors.
The sum performed is weighted in order to give a
characterization to every boid, a sort ofpersonality.
Every decision is taken considering a certain num-
ber of neighbors. This number is fixed to four in
order to store all of them in one pixel of a texture.
We have implemented the three different types of
steering behavior presented by Reynolds in [13] and
calledflocking behavior(an intuitive representation
of them is shown in Figure 1):

• theseparationbehavior tends to keep distance
from other neighbors. This behavior is nec-

essary to prevent boids collision. A repulsive
force is calculated as the difference vector be-
tween current boid position and every neigh-
bors while the steering force is calculated as
the average vectors between all the repulsive
forces.

• thealignmentbehavior tends to align the boid
with other neighbors computing the steering
force as difference between the average of the
forward vectors of the neighbors and the for-
ward vector of the boid itself.

• the cohesionbehavior tends to move the boid
toward the center of his local neighborhood.
This behavior is useful in order to give to the
flock a aggregated aspect. The steering force
is obtained computing the average position of
neighbors.

Another behavior that has been implemented in the
simulation has its justification in the search for a
better visual effect: theleader followingbehav-
ior. This behavior constrains every boid to follow
a fixed leader inside the flock, this leader can fol-
low both a fixed path or a random path. Finally,
since the flock can not move inside a scene infinitely
large, we also implemented acontainmentbehavior:
it constrains every boid to remain inside a bounding
box that surrounds the entire scene and hence con-
strains the flock to remain in the scene.

3.3 Obstacle avoidance

In the simulation we also considered an important
aspect: the interaction with objects in the environ-
ment. An expected behavior is that a flock of boids

666

manages to avoid obstacles it meets on its own path.
A possible collision adds new information in the
knowledge of every boid that sees it and the model
has to take it into account. One approach is to
use the work of Egbert and Winkler [3] about the
force fields. In this method a discrete force field
surrounds every object present in the environment,
approaching to an obstacle the forward vector is
summed with the vectors of force field and the boid
feels a growing opposing forces on its path towards
it. Two problems arise with this solution: first,
when the boid is flying perpendicularly to a wall the
force field just modifies the module of speed not the
direction. Second, a boid flying parallel to a wall
feels the influence of force field even though it does
not flying towards it.

For our purpose we improved the force field solu-
tion tackling the problem of perpendicular or paral-
lel flight towards an object by using the force field.
Using the dot product to compute the angle between
the force field vector and forward vector we distin-
guish three case to calculate the steering force:

• = 0, the boid is flying parallel to an obstacle
and nothing is done.

• > 0, the boid is flying away from an obstacle
and we use as steering vector the force field
vector.

• < 0, the boid is flying toward an obstacle and
we use as steering force the sum of forward
vector more vector force field.

Another problem that appears by using the force
field solution is what we called “lack of time”: it
is the situation in which a boid may be safe at time
i and at timei + 1 it may be inside a wall because
of the approximations due to the discrete time sim-
ulation. To resolve this problem we try to foresee
future positions in order to verify if a boid is on a
collision route.

The force field is built for every object in the
scene using the normal vectors of the objects it-
self. This field is built using a simplified geome-
try model because in the obstacles avoidance more
than details is enough to use the shape of the ob-
jects. We store the force field as a three dimen-
sional discrete vector field and linear interpolation
is used to compute intermediate vectors. In fact we
append addition layer outside the field with all vec-
tors to zero, hence the linear interpolation permit
to obtain values from a position where the field has
maximum influence to another position where has

Texture 1

Texture 2

Texture 3

Texture 4

Output Texture 1(
 off-screen rendering
)

Output Texture 2 (
 off-screen rendering
)

Quad

Figure 2: The streaming model on GPU. Our im-
plementation uses a quad to drive data stream stored
into textures, the result is one or more textures.

no influence. This solution is particularly efficient
when implemented on graphics hardware because
vector fields are stored using three dimensional tex-
tures and intermediate vectors are computed using
the highly efficient hardware linear interpolation.
Besides this solution is a good framework to man-
age static and dynamic obstacles.

4 Mapping the behavioral model on
the GPU

This model is suitable to be implemented on graph-
ics hardware because every element can be man-
aged as a single computation task and the decisions
are taken in a distributed flavor and no centralized
control is needed. Furthermore just a little amount
of information must be maintained for every boid.
We use the fragment processor to do all the neces-
sary computations because it permits textures to be
taken in input and writes the results in another tex-
ture.

For our purposes we adopt the model used by
Harris [4] in which the geometry drives the process-
ing. All the information about the boids is encoded
into pixels of a texture, to force the fragment pro-
cessor to do all the computations about one boid, we
map all textures into a quad that has the same size

666

Behavior

flock
 Containment
 Leader

Following

Obstacle

avoidance

Personality blend

Obstacle

avoidance

Acceleration

Position

Velocity
 Orientation

Figure 3: Architecture of behavior model on the
GPU.

of frame buffer as shown in Figure 2. In this way
the fragment program processes every boid fetch-
ing all data about it in only one execution. To avoid
simultaneous rendering from one texture into itself
not available on current hardware, we use a double-
texture scheme. The data stored in the input texture,
are used to update the data stored in the output tex-
ture. When the process is completed, we send the
output texture to the CPU or to the next fragment
program, and the textures are swapped for next ren-
dering. The implementation of the entire process
has been designed considering that every fragment
program has a limit on the number of instructions
as well as a limit on the number of register outputs
hence the entire process is done using a multi pass
scheme, the output of a fragment program is sent as
input to the next fragment.

4.1 Implementation details

The entire process is shown in Figure 3. We im-
plemented all modules as Cg fragment programs
which are invoked using OpenGL Cg run-time func-
tions described in the Cg toolkit user’s manual [18].

To avoid overhead inside the GPU pipeline we de-
voted particular attention to switching textures and
switching GL contexts between successive modules
in the architecture.

The entire process takes as input four textures:
1) a constant textureTc to store scalar information
as mass, maximum velocity and maximum acceler-
ation, 2) a textureTo for orientation (three scalar
values), 3) a textureTp for position (three scalar
values) and current velocity (one scalar value), 4)
a textureTn to store the four nearest boids.

We define the execution of a fragment program
[T1, . . . , Tn] 7→ FRAGMENT 7→ [T] as the opera-
tion that binds the fragment, sets up the texture pa-
rametersT1,. . . ,Tn and draws the geometry onto the
output textureT using off-screen rendering (called
p-buffer). The entire process is executed in the fol-
lowing steps:

1. Prepare the input textureTc, To, Tp, Tn

2. [Tp, To] 7→ CONTAINMENT 7→ [Ts1]

3. [Tp, To] 7→ LEADER FOLLOWING 7→ [Ts2]

4. [Tp, To] 7→ FLOCKING BEHAVIOR 7→ [Ts3]

5. For every obstaclei with texture fieldTfi

• [Tp, To, Ts4, Tfi] 7→

OBSTACLE AVOIDANCE 7→ [Ts4]

6. [Ts1, Ts2, Ts3, Ts4] 7→ PERSONALITY BLEND 7→

[Ts]

7. [Tc, Ts] 7→ ACCELERATION 7→ [Ta]

8. [Tc, Ta] 7→ POSITION VELOCITY 7→ [TP]

9. [Tc, Ta] 7→ ORIENTATION 7→ [TO]

The steps 2,3, 4 and 5 apply all the steering be-
haviors described in 3.2 producing four steering tex-
tures. In particular step 5 about obstacle avoidance
is applied for all texture field objects present in the
scene producing a steering vector as described in
3.3, the result of every iteration is summed with
previous result and then reused for the next. All
four steering textures are blended in step 6 using
a weighted average with weights set up as uniform
parameters. This texture is used in step 7 to com-
pute the acceleration using the parameters defined
in section 3.1. Then this force is used in last two
fragments to compute the new positionsTP and
new orientationsTO.

TexturesTP and TO are sent back to the CPU
to prepare the new geometry data of all boids to be
rendered. This texture readback from GPU to CPU
can impose performance penalties but new OpenGL
extensions would eliminate in our architecture this
drawback. The textureTP is also used to update
the space partitioning data structure and to compute
a new texture about the four nearest boids.

666

4.2 Neighbor searching

The three behaviors that have been implemented in
the personality of every boid are heavily influenced
by the neighbors of such boid: this tries to mim-
ick the limited knowledge of the flock that a boid
has through its eyes. Every boid has in the parame-
ters that defines its “life” a list of neighbors used in
vicinity considerations.

This is known as one of the critical time-
consuming phases of the model (see [14]). Being
the path and the general shape of the flock both very
dynamic, the calculation of the list of neighbors has
to be done every frame and it is usually a very ex-
pensive operation.

In order to avoid the calculation of this list at ev-
ery frame, a useful characteristics ia based on the
observation of trying to avoid the calculation when
a list neighbors of a boid is the same between the
frames. We give here an intuitive explanation: when
a boid flights uniformly respect on its neighbors, its
list of neighbors remains the same frame by frame.
At this point it is useful to consider that the calcu-
lation of the neighbors list is performed in a grid-
based flavor: every boid considers as neighbors just
the boids belonging to the cells around it.

Our heuristic is the following: at the beginning
of every step of the simulation every boid knows
which cell of the grid it belongs to, at the end of the
step, after performing all the calculation regarding
its behavior, the boid knows in which cell of the grid
it will belong on the next step (both this information
can be obtained at the cost of a floating point divi-
sion). Every boid can express the relative variation
of cell position with a triples of values, one for every
spatial dimension, took from the set[−1, 0, +1]. At
the beginning of every step a 3-dimensional matrix
of 27 (3 × 3 × 3) values, calledscattering matrix
(see figure 4 (a)), is cleared and it is used to keep
track of the amount of boids that, at the end of the
step, has performed a certain change of cell, the in-
tent of the matrix is to measure thescatteringof the
flock, indeed every flock adds 1 in the cell of the
scattering matrix, whose coordinates are given by
the triple the boid calculates.

What we expect is that, as long as the flock flies
in a wide empty space it will keep a quite stable
shape also keeping constant the neighbors lists of
the boids, and this information is reflected in the
scattering matrix through a large value in one cell
and almost 0 in other cells. On the other hand,

Figure 4: Scattering matrix: it is used to track
down how much the flock has a uniform shape af-
ter each frame calculation. The cells are numbered
with triple meaning indicating in which direction
the boid is moving.

whenever the flock reaches the bounds of the space,
or intercept an obstacle to avoid, the matrix will
present a certain number of cells containing small
values, meaning that boids are changing direction
with high variability. A large value in a cell of ma-
trix means that a lot of boids are changing cell (in
the spatial subdivision matrix) in the same direction
(see figure 4 (b)). A sparse scattering matrix means
that boids are changing cell (once again in spatial
subdivision matrix) in various directions (see figure
4 (c)) and this means that the neighbors lists have to
be recalculated.

5 Results

We have experimented on an AMD Athlon XP
2000+ based machine with 1.67Ghz processor
speed and 512Mb of RAM. The graphics card used
was a GeForce FX 5800 with 128Mb of video mem-
ory, core speed of 300Mhz and memory speed of
600Mhz. For comparison we implemented both a
CPU only version and a GPU based version of the
behavioral model. The times showed in figures are
averaged over 1000 steps.

The test scene used to render the flock is com-
posed of a statically tessellated terrain, and six
avoidable objects, each one with its vector field:
four columns, a crossbeam and a moving sphere.

In Figure 5 the time weight of every phase of the
frame is shown. We labeled with an asterisk the
phases running on GPU. A result that came from

666

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

32

4096

8192

12288

16384

20480

24576

28672

32768

36864

40960

45056

49152

53248

57344

61440

65536

CPU to GPU

GPU to CPU

Rendering

*Orientation

*Position

*Acceleration

*Personality blend

*Avoidance

*Flocking

Neighbor Search

*Leader Following

*Containment

total time

Figure 5: Total time composition. On the x-axis the number of boids. Time is expressed in seconds.

Figure 6: Performances of the two different imple-
mentations: CPU and GPU boosted. Time on the
y-axis is expressed in seconds. The lower is better.

the analysis of the time distribution is that the heav-
iest phase is neighbors searching and that it yet runs
on CPU. Something that can also be deducted, but a
better analysis is given in Figure 6, is that the GPU
boosted simulation scales well on increasing num-
ber of boids.

In Figure 6 we provided the performances com-
parison between the two implementations. The fig-
ure shows the number of seconds per iteration. It is
clear that GPU implementation scales much better
than CPU. This is an interesting point because we
achieved this result in spite of the heavy phase of
neighbors search yet running on CPU.

In Table 1 are reported the performances of the
application running the GPU version expressed in
frames per second(fps) which is a very common

of boids 32 4096 16384 32768
FPS 115.29 30.07 8.01 3.45

Table 1: Frame per second performance. The higher
is better.

measure unit for graphics application. We would
like to remark that fps is a measure prone to high
variations depending on what is actually shown
in the visualization. An interesting comparison
should be done with results reported by Reynolds
in [15, 16] where a performance of 60 fps was ob-
tained with 300 boids. Our system animates 1600
boids at 60 fps with obstacle avoidance, but inter-
active frame rates, usually about 20 fps, can yet be
obtained with more than 8000 boids.

6 Conclusions and future work

In this work we have shown:
• a method to map a distributed behavioral

model onto GPU by organizing data as stream
in order to manage them on GPU.

• the use of vector fields to manage obstacle
avoidance improving the behavior of boids ap-
proaching an obstacle and how use the linear
hardware interpolation to compute middle vec-
tors.

• an heuristic to improve the update of spatial
data structure.

No matter how much the GPU implementation
beats the CPU implementation, we yet have a

666

time demanding phase kept on CPU, the neigh-
bors search. We have planned further research re-
lated to the regular cell grid we used to partition
the flock. The scattering matrix heuristic offered,
in some very preliminary tests, promising results
that deserves further investigations: in particular,
we would like to find a schema in which every boid
updates its position in the grid with no centralized
coordination.

In general the searching for the k-nearest neigh-
bors is a well studied problem and plenty of solu-
tion are folklore. What we find challenging is the
implementation of one of the solutions on the GPU
in order to takethe complete simulationon GPU.
In this context it seems interesting to consider the
technique of using bitonic sort as shown in Purcell
et al. [10] to sort boids into spatial structure.

Another scenario where we do expect great im-
provements is the use of new extensions of GPUs.
In particular we can use displacement mapping into
vertex program avoiding readback of output tex-
tures from GPU to CPU. Equally interesting could
be the introduction of the novel PCI Express bus
[19] which will provide bandwidth suitable to fast
data movements between CPU and GPU.

References

[1] Bolz, J., Farmer, I., Grinspun, E., and
Schroder,Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid, SIG-
GRAPH 2003.

[2] Carr, N.A., Hall, J.D. and Hart, J.C.The Ray
Engine, Graphics Hardware 2002.

[3] P. K. Egbert and S. H. Winkler,Collision Free
Object Movement Using Vector Fields, IEEE
Computer Graphics and Applications 1996,
v.16 n.4, p.18-24, July 1996

[4] M. J. Harris, Simulation and animation with
hardware accelerated procedural textures,
Game Developers Conference 2003.

[5] M. J. Harris, Greg Coombe, Thorsten Schuer-
mann and Anselmo Lastra,Physically-Based
Visual Simulation on Graphics Hardware,
Graphics Hardware 2002.

[6] Kruger, J., and Westermannm R.Linear al-
gebra operator for gpu implementation of nu-
merical algorithms, SIGGRAPH 1983.

[7] Lengyel, J., Reichert, M., Donald, B.R.
and Greenberg, D.P.Real-Time Robot Motion

Planning Using Rasterizing Computer Graph-
ics Hardware, Proceedings of SIGGRAPH
1990, p.327-335, August 1990.

[8] Wei Li, Zhe Fan, Xiaoming Wei and Arie
Kaufman,GPU-Based Simulation with Com-
plex Boundaries,Technical Report 031105,
Computer Science Department, SUNY at
Stony Brook, Nov 2003.

[9] Purcell, T.J., Buck, I., Mark, W.R. and Hanra-
han, P.Ray Tracing on Programmable Graph-
ics Hardware, ACM Transactions on Graph-
ics, Volume 21, Issue 3, July 2002.

[10] T. J. Purcell, C. Donner, M. Cammarano,
H. W. Jensen, and P. Hanrahan,Photon map-
ping on programmable graphics hardware,
Graphics Hardware 2003.

[11] Reeves, W.T.,Particle System - A Technique
for modeling a Class of Fuzzy Objects, Pro-
ceedings of SIGGRAPH 1983.

[12] C. W. Reynolds,Flocks, herds and schools:
A distributed behavioral model, SIGGRAPH,
1987.

[13] C. W. Reynolds,Steering behaviors for au-
tonomous characters, Game Developers Con-
ference (GDC), 1999.

[14] C. W. Reynolds,Interaction with Groups of
Autonomous Characters, in the proceedings
of Game Developers Conference 2000, CMP
Game Media Group (formerly: Miller Free-
man Game Group), San Francisco, California,
pages 449-460, 2000.

[15] C. W. Reynolds, Games Research: the
Science of Interactive Entertainment, SIG-
GRAPH, 2000, Course 39. Course de-
scription at http://www.red3d.com/
siggraph/2000/course39/

[16] C. W. Reynolds, Artificial Life for Com-
puter Games, Game Developers Confer-
ence, 2001, Course. Course description
at http://www.dgp.toronto.edu/
∼funge/gdc2001/

[17] S. Venkatasubramanian,The Graphics Card
as a Stream Computer, Proc. of the Work-
shop on Management and Processing of Data
Streams, in cooperation with ACM SIG-
MOD/PODS and FCRF 2003, San Diego
(USA), June 8 2003.

[18] NVIDIA Corporation, “Cg Toolkit User’s
Manual”, Release 1.1, February 2003.

[19] http://www.pcisig.com/specifications/pciexpress

666

